Search results

Search for "Kelvin force microscopy" in Full Text gives 4 result(s) in Beilstein Journal of Nanotechnology.

Charged particle single nanometre manufacturing

  • Philip D. Prewett,
  • Cornelis W. Hagen,
  • Claudia Lenk,
  • Steve Lenk,
  • Marcus Kaestner,
  • Tzvetan Ivanov,
  • Ahmad Ahmad,
  • Ivo W. Rangelow,
  • Xiaoqing Shi,
  • Stuart A. Boden,
  • Alex P. G. Robinson,
  • Dongxu Yang,
  • Sangeetha Hari,
  • Marijke Scotuzzi and
  • Ejaz Huq

Beilstein J. Nanotechnol. 2018, 9, 2855–2882, doi:10.3762/bjnano.9.266

Graphical Abstract
  • uses so-called active cantilevers in cantilever scanning configuration [146]. These are self-actuated and self-sensing scanning probes [147], which can be used both for lithography and for measuring the generated structures by atomic force microscopy and related techniques such as Kelvin force
  • microscopy or force–distance measurements, without the use of additional optical read-out. In Figure 15 an active cantilever is shown, together with a close-up view of the sharp tip at the end of the cantilever. This active cantilever is equipped with a thermomechanical actuator and a piezo-resistive sensor
PDF
Album
Review
Published 14 Nov 2018

Fundamental edge broadening effects during focused electron beam induced nanosynthesis

  • Roland Schmied,
  • Jason D. Fowlkes,
  • Robert Winkler,
  • Phillip D. Rack and
  • Harald Plank

Beilstein J. Nanotechnol. 2015, 6, 462–471, doi:10.3762/bjnano.6.47

Graphical Abstract
  • using MeCpPt(IV)Me3 precursor. In particular, the scaling behavior of proximity effects as a function of the primary electron energy and the deposit height is investigated through experiments and validated through simulations. Correlated Kelvin force microscopy and conductive atomic force microscopy
  • (AFM) and Kelvin force microscopy (KFM) investigations, the latter have been used for conductive-AFM (C-AFM) measurements. All substrates were taken from sealed wafer boxes and were immediately transferred to the dual beam microscope followed by overnight pumping towards a target chamber pressure of (2
  • behavior of functional (electrically conductive) and non-functional (electrically insulating) proximity regions in dependence on the primary electron energy and the deposit thickness. To access the chemical properties of the deposits, Kelvin force microscopy (KFM) was conducted as it provides a laterally
PDF
Album
Supp Info
Full Research Paper
Published 16 Feb 2015

Noise performance of frequency modulation Kelvin force microscopy

  • Heinrich Diesinger,
  • Dominique Deresmes and
  • Thierry Mélin

Beilstein J. Nanotechnol. 2014, 5, 1–18, doi:10.3762/bjnano.5.1

Graphical Abstract
  • and optimizing around randomly chosen key values. Keywords: dynamic; frequency noise; Kelvin force microscopy; noise performance; phase noise; thermal excitation; Introduction Surface potential imaging in combination with atomic force microscopy in ultrahigh vacuum is based on the measurement of
  • electrostatic forces in amplitude modulation Kelvin force microscopy (AM-KFM) [1] or the measurement of the electrostatic force gradient in FM-KFM [2], in analogy with the FM mode used in noncontact atomic force microscopy (nc-AFM) [3]. The FM-KFM mode is often favored either because when a higher derivative of
PDF
Album
Full Research Paper
Published 02 Jan 2014

Single-pass Kelvin force microscopy and dC/dZ measurements in the intermittent contact: applications to polymer materials

  • Sergei Magonov and
  • John Alexander

Beilstein J. Nanotechnol. 2011, 2, 15–27, doi:10.3762/bjnano.2.2

Graphical Abstract
  • Sergei Magonov John Alexander Agilent Technologies, 4330 Chandler Blvd., Chandler, AZ 85226, U.S.A. 10.3762/bjnano.2.2 Abstract We demonstrate that single-pass Kelvin force microscopy (KFM) and capacitance gradient (dC/dZ) measurements with force gradient detection of tip–sample electrostatic
  • selective swelling of components. Keywords: atomic force microscopy; fluoroalkanes; Kelvin force microscopy; surface potential; Introduction Atomic force microscopy (AFM) applications include high-resolution imaging, probing of local materials properties and compositional mapping of heterogeneous
  • enable measurements of electrical properties (surface potential, dielectric permittivity, capacitance, etc.) at a tip–sample junction. Here we will demonstrate that single-pass Kelvin force microscopy (KFM) studies based on sensing of an electrostatic force gradient can be performed in the intermittent
PDF
Album
Full Research Paper
Published 06 Jan 2011
Other Beilstein-Institut Open Science Activities